Computer aided mass detection in mammography with temporal change analysis
نویسندگان
چکیده
This paper presents a method to extract change information from temporal mammogram pairs and to incorporate the temporal change information in the malignant mass classification. In this method, a temporal mammogram registration framework which is based on spatial relations between regions of interest and graph matching was used to create correspondences between regions of current mammogram and regions of previous mammogram. 18 image features were then used to capture the differences (temporal changes) between the matched regions. To assess the contribution of temporal change information to the mass detection, 5 methods were designed to combine mass classification on image features measured on single regions and mass classification on temporal features to improve overall mass classification. The method was tested on 95 pairs of temporal mammograms using k-fold cross validation procedure. The experimental results showed that, when combining two classification results using linear combination or by taking minimum value, the Az score of overall classification performance increased from 0.8843 to 0.8989 and 0.8863 respectively. The results demonstrated that registering temporal mammograms, measuring temporal changes from matched regions and incorporating the change information in the mass classification improves the overall mass detection.
منابع مشابه
A Hybrid Method for Mammography Mass Detection Based on Wavelet Transform
Introduction: Breast cancer is a leading cause of death among females throughout the world. Currently, radiologists are able to detect only 75% of breast cancer cases. Making use of computer-aided design (CAD) can play an important role in helping radiologists perform more accurate diagnoses. Material and Methods: Using our hybrid method, the background and the pectoral muscle...
متن کاملInterval change analysis to improve computer aided detection in mammography
We are developing computer aided diagnosis (CAD) techniques to study interval changes between two consecutive mammographic screening rounds. We have previously developed methods for the detection of malignant masses based on features extracted from single mammographic views. The goal of the present work was to improve our detection method by including temporal information in the CAD program. To...
متن کاملDIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION
Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...
متن کاملA Hierarchical Classification Method for Breast Tumor Detection
Introduction Breast cancer is the second cause of mortality among women. Early detection of it can enhance the chance of survival. Screening systems such as mammography cannot perfectly differentiate between patients and healthy individuals. Computer-aided diagnosis can help physicians make a more accurate diagnosis. Materials and Methods Regarding the importance of separating normal and abnorm...
متن کاملA review of neural network detection methods for breast cancer: review article
Breast cancer is the most common cancer among women and the earlier it is diagnosed, the easier it is to treat. The most common way to diagnose breast cancer is mammography. Mammography is a simple chest x-ray and a tool for early detection of non-palpable breast cancers and tumors. However, due to some limitations of this method such as low sensitivity especially in dense breasts, other method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Sci. Inf. Syst.
دوره 12 شماره
صفحات -
تاریخ انتشار 2015